精彩东方文学

學霸的科幻世界 第四十七章 靈光乍現

作者/幸運的球球 看小說文學作品上精彩東方文學 http://www.nuodawy.com ,就這么定了!
    這次補給任務來得恰到好處,正是龐學林研究陷入停滯的時候。

    補給飛船的到來讓龐學林從那種忘我的狀態中脫離出來,否則那種狀態一直持續下去,對他而言未必是一件好事。

    接下來的兩個月時間,龐學林按照阿瑞斯計劃指揮部發來的任務日志,在能源艙這一側搭建了一個全新的生活艙,新生活艙與能源艙相連,能源艙再與番茄種植艙、土豆種植艙相連,構成一個四艙室結構。

    新生活艙不管是結構強度還是使用壽命,都比原來的棲息艙高出不少,至少龐學林通過新生活艙進出氣閘室的時候,不用再擔心發生氣爆了。

    之后,龐學林重新對棲息艙進行一次大規模檢查,更換掉部分磨損比較嚴重的零部件,如氧合機系統、水循環系統、空調系統、鎳氫電池組、太陽能電池組等等。

    為了方便龐學林進行重體力勞動,阿瑞斯計劃指揮部在這次補給物資中,還專門配備了兩套外骨骼裝具。

    一套用于EVA任務,一套用于艙內任務。

    充足的物資保障,完善的生活設施,使得龐學林在火星生存的安全性以及生活質量得到了進一步的提高。

    經過幾個月的忙碌之后,生活再次變得安定下來,龐學林也將目光重新投向ABC猜想。

    過去一年多的潛心學習和研究,對遠阿貝爾幾何以及一般化泰希米勒幾何理論,龐學林都有了一個較為清晰地理解。

    他幾乎可以肯定,望月新一的工作,存在著很大的問題。

    但他并沒有想著要去找出望月新一論文中的細節錯誤,然后再去掀起一場口水大戰,他有更高的目標。

    他要趁著這幾年難得沒人打擾的機會,在遠阿貝爾幾何的基礎上,開創一套新理論,來徹底解決ABC猜想的問題。

    這個難度很大。

    在數學領域,攻克一個猜想容易,但想要開創一套體系卻極難。

    但凡能開創一套全新數學體系的,幾乎都是開宗立派大宗師級別的人物。

    比如開創群論的伽羅瓦,雖然他在21歲那年便英年早逝,但在任何有史以來最偉大數學家排名標準中,伽羅瓦都是前五乃至前三的存在。

    又比如,現代代數幾何奠基人格羅滕迪克,EGA、SGA、FGA,洋洋灑灑數千頁,是代數幾何史上的不朽名著,使得代數幾何這個古老的數學分支煥發出了新的活力,最終導致他的學生皮埃爾·德利涅完全證明了韋伊猜想,這被認為是20世紀純粹數學最重大的成就之一。

    由于格羅滕迪克的領導,上世紀六七十年代,巴黎高等研究所是公認的世界代數幾何研究中心,他也為此獲得了1966年國際數學最高獎菲爾茲獎。

    因此,龐學林可以說在自己面前樹立了一座珠穆朗瑪峰,什么時候能攀上這座高山,龐學林自己心里也沒底。

    甚至于到現在,龐學林都還沒能找到一條合適的進山路線。

    龐學林只能一邊在火星上安心生活,一邊思考。

    當然,這種思考,只是間歇性的,有靈感的時候,他會潛心思考,沒有靈感的時候,就按部就班工作生活,有空的時候在生活艙內聽聽音樂,看看電影,讓自己放松一下。

    后來龐學林發現了一個更好的思考方式。

    那就是穿著EVA宇航服,以棲息艙為圓心,一百米為半徑,繞著棲息艙散步。

    一個人行走在這個荒涼孤寂的世界中,有種獨特的寂寥感,更容易讓自己的腦袋進入放空狀態。

    特別是在晚上的時候,火星地表漆黑一片,只余下棲息艙微弱的燈光以及頭頂漫天的繁星。

    在這種復雜世界隱入黑暗,只剩下點點星光的時刻,龐學林反而能感受到在數論宇宙中,素數就仿佛那一顆顆閃閃發光的恒星,呈現出一種復雜的數學構型。

    他經常一走就好幾個小時,直到EVA的二氧化碳過濾器發出警報聲,他才會回過神來,返回棲息艙。

    后來他學乖了,隨身帶上一個備用的二氧化碳過濾器,一個用完,隨時換上另外一個,等靈感耗盡再返回棲息艙。

    時間一天天過去。

    一個月,兩個月……

    一年,兩年……

    寒冷的火星大氣磨礪著龐學林的思維,漫長的思想旅程中,遠阿貝爾幾何的邏輯體系在龐學林腦海中漸漸散去,取而代之的,是一種更加凌亂,但更加接近本質的數理邏輯。

    龐學林的思路越來越清晰,邏輯也變得越來越鋒利。

    不知不覺間,龐學林在火星上已經生活了超過五年時間,而阿瑞斯四號任務組,也開啟了新的火星之旅。

    在第1468太陽日,阿瑞斯計劃指揮部在棲息艙五百米外,投放了一艘MAV,一個月后,赫爾墨斯號飛船從地球同步軌道空間站起航,上面搭載的阿瑞斯四號任務組正式前往火星,他們的主要任務,便是將龐學林安全帶回地球。

    第1689太陽日,距離阿瑞斯四號任務組抵達火星,還有一個多月時間。

    這天晚上,龐學林再次出艙,開始了又一趟思想旅程。

    “絕對伽羅華群Gal(Q??/Q)可以作用在所有光滑代數曲線上,因為每個光滑代數曲線對應著一個系數是代數數的多項式,而絕對伽羅華群Gal(Q??/Q)作為代數數的對稱群……”

    ……

    “在絕對伽羅華群Gal(Q??/Q)中最簡單的不平凡變換就是復共軛,在復平面上,復共軛就是沿實數軸的鏡像對稱,所以它作用在光滑代數曲線上,得到的也是光滑代數曲線的鏡像對稱。如果一個光滑代數曲線的鏡像對稱還是它自己,根據別雷定理,復共軛作用到相應的代數曲線上必定得到原來的代數曲線,也就是說所有系數都是實數。如果兩個光滑代數曲線互為鏡像對稱,它們對應的代數曲線的系數必定互為共軛,也就是說起碼有一些系數是虛數。”

    ……

    “在光滑代數曲線中,有著不少的組合不變量,它們在絕對伽羅華群Gal(Q??/Q)的變換下保持不變:頂點個數、頂點度數、面的個數、面的度數等等。除了這些看似簡單的不變量,我們還可以給每個光滑代數曲線賦予一個群,這個群可以稱之為光滑代數曲線的單值群。這些群擁有更為復雜的結構,但同樣在絕對伽羅華群Gal(Q??/Q)的變換下保持不變。”

    ……

    “那么,絕對伽羅華群Gal(Q??/Q)能否作用于泰希米勒層級上呢?泰希米勒層級所有更高的部分都可以由前兩層組合而來,第一層提供的是元素,第二層提供的是元素之間的關系。而這前兩層恰好對應著光滑代數曲線,第二層對應的則是在數論中有著廣泛應用的橢圓曲線……”

    ……

    隱隱間,龐學林仿佛抓到了某種奇妙的線索。

    他抬起頭,頭頂的星空反射在宇航服頭盔的玻璃護罩上。

    素數在數域宇宙中泛起一層層漣漪,復雜的數域表層之下,素數間一種更為直觀的聯系開始在龐學林眼中呈現。

    “光滑代數曲線本身有著許多對稱性,對于這些對稱性,可以確定它必然來自絕對伽羅華群Gal(Q??/Q),如果能知道這一點,就相當于刻畫了絕對伽羅華群Gal(Q??/Q)本身!”

    數字構建的星空出現了一道破口,龐學林眼神越來越亮,

    一道閃電劃過他的大腦,照亮了那隱沒在黑暗中,漸漸變得富含規律的素數星空。

【精彩東方文學 www.nuodawy.com】 提供武動乾坤等作品手打文字版最新章節首發,txt電子書格式免費下載歡迎注冊收藏
百度風云榜小說:劍來 一念永恒 圣墟 永夜君王 龍王傳說 太古神王 我真是大明星 校花的貼身高手 真武世界 劍王朝
Copyright © 2002-2018 http://www.nuodawy.com 精彩東方文學 All Rights Reserved.
小說手打文字版來自網絡收集,喜歡本書請加入書架,方便閱讀。
主站蜘蛛池模板: 景东| 大新县| 荔波县| 西乡县| 科技| 二手房| 伊宁市| 合作市| 廉江市| 余江县| 阿合奇县| 蕉岭县| 江阴市| 尼玛县| 天津市| 莆田市| 元谋县| 鹤岗市| 繁昌县| 开阳县| 合江县| 尖扎县| 晋中市| 沭阳县| 磐石市| 靖西县| 犍为县| 湖南省| 珠海市| 陆丰市| 文成县| 延边| 合水县| 丘北县| 比如县| 肥东县| 桐庐县| 买车| 麻江县| 平武县| 余干县|